OKLAHOMA STATE UNIVERSITY

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECEN 3723 Systems I Fall 2000 Midterm Exam #2

"choose any 2 from Problems 1, 2, and 5, in addition to Problems 3 and 4"

Name :	 	
Student ID:		
ail Address		

Problem 1:

Consider a filtered circuit that the output response, y(t), is the time-convolution of the input signal, x(t), graphically shown below, and the impulse response, h(t), where $h(t) = e^{-5t}u(t)$, please find y(t).

Problem 2: Show

$$\mathbf{Z}[\text{Im } x(k)] = \frac{1}{2} (X(z) - X^*(z^*))$$

where '*' denotes complex conjugate operation.

Problem 3:

 $\overline{\text{Find }X(z)}$ for

a)
$$x(k) = k^3 u(k)$$

a)
$$x(k) = k^3 u(k)$$

b) $x(k) = \left(\frac{1}{2}\right)^k u(-k-2)$

Problem 4: Find x(k) for

- a) $X(z) = \frac{1}{z^2 + 1}$ b) $X(z) = \ln\left(\frac{z 1}{2z}\right)$

Problem 5:

A linear time-invariant discrete-time system is given by the input-output difference equation y(k) + y(k-1) - 2y(k-2) = x(k) - 2x(k-1) + x(k-2).

Find an input x(k) with x(k) = 0, k < 0 that gives the output response y(k) = 2u(k) - u(k - 2) with initial condition y[-2] = 2, y[-1] = 1.